The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana

نویسندگان

  • Huajian Zhang
  • Qin Fang
  • Zhengguang Zhang
  • Yuanchao Wang
  • Xiaobo Zheng
چکیده

Active oxygen species (AOS) are central components of the defence reactions of plants against pathogens. Plant respiratory burst oxidase homologues (RBOH) of gp91(phox), a plasma membrane protein of the neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, play a prominent role in AOS production. The role of two RBOH from Nicotiana benthamiana, NbrbohA and NbrbohB that encode plant NADPH oxidase in the process of elicitor-induced stomatal closure and hypersensitive cell death is described here. NbrbohA was constitutively expressed at a low level, whereas NbrbohB was induced when protein elicitors exist (such as boehmerin, harpin, or INF1). The virus-induced gene-silencing (VIGS) method was used to produce single-silenced (NbrbohA or NbrbohB) and double-silenced (NbrbohA and NbrbohB) N. benthamiana plants. The hypersensitive response (HR) of cell death and pathogenesis-related (PR) gene expression of these gene-silenced N. benthamiana plants, induced by various elicitors, are examined. The HR cell death and transcript accumulation of genes related to the defence response (PR1) were slightly affected, suggesting that RBOH are not essential for elicitor-induced HR and activation of these genes. Interestingly, gene-silenced plants impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production, but not elicitor-induced cytosolic calcium ion accumulation and elicitor-triggered AOS production in guard cells. These results indicate that RBOH from N. benthamiana function in elicitor-induced stomatal closure, but not in elicitor-induced HR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure

Elicitors/pathogen-associated molecular patterns (PAMPs) trigger the plant immune system, leading to rapid programmed cell death (hypersensitive response, HR) and stomatal closure. Previous reports have shown that the vacuolar processing enzyme (VPE), a cysteine proteinase responsible for the maturation of vacuolar proteins, has caspase-1-like activity and mediates TMV- and mycotoxin-induced ce...

متن کامل

ALY proteins participate in multifaceted Nep1Mo-triggered responses in Nicotiana benthamiana and Arabidopsis thaliana

Previously, it was found that Nep1Mo (a Nep1-like protein from Magnaporthe oryzae) could trigger a variety of plant responses, including stomatal closure, hypersensitive cell death (HCD), and defence-related gene expression, in Nicotiana benthamiana. In this study, it was found that Nep1Mo-induced cell death could be inhibited by the virus-induced gene silencing of NbALY916 in N. benthamiana. N...

متن کامل

MAPK Signaling Regulates Nitric Oxide and NADPH Oxidase-Dependent Oxidative Bursts in Nicotiana benthamiana W OA

Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/ NTF4 and MEK1-NTF6 participate in the regu...

متن کامل

Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis.

In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an ...

متن کامل

MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana.

Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/NTF4 and MEK1-NTF6 participate in the regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2009